
(1) Anderson, T. F.; Prausnitz, J. M. Ind. Eng. Chem. Process Des . Dev. 1978, 17, 552-61.
(2) Boublik, T.; Fried, V.; Hála, E. "Vapour Pressures of Pure Substances"; Elsevier: New York, 1973; pp 21, 123.
(4) Christiansen, L. J.; Fredenslund, A. AIChE J. 1975, 21, 49-57.
(5) Dreisbach, R. R. Adv. Chem. Ser. 1955, No. 15, 134.

Fredenslund, A.; Gmehling, J.; Rasmussen, P. "Vapor-Liquid Equilibria Using UNIFAC"; Elsevier: Amsterdam, 1977; Chapter 5.
(7) Hayden, J. G.; O'Connell, J. P. Ind. Eng. Chem. Process Des. Dev. 1975, 14, 209-16.
(8) Muthu, O.; Maher, P. J.; Smith, B. D. J. Chem. Eng. Data 1980, 25 , 163-70.
(9) Nagata, I.; Katoh, K. Thermochim. Acta 1980, 39, 45-62.
(10) Ohta, T.; Koyabu, J.; Nagata, I. Fluid Phase Equillb. 1981, 7, 65-73.
(11) Ohta, T.; Nagata, I. J. Chem. Eng. Data 1980, 25, 283-6.
(12) Prausnitz, J. M.; Anderson, T. F.; Grens, E. A.; Eckert, C. A.; Hsieh, R.; O'Connell, J. P. "Computer Calculations for Multicomponent VaporLiquid and Liquid-Liquid Equillbria"; Prentice-Hall: Englewood Cliffs, NJ, 1980; Chapters 3 and 4, Appendix D.
(13) Riddick, J. A.; Bunger, W. B. "Organic Solvents", 3rd ed.; Wiley-Interscience: New York, 1970; pp 109, 148, 271, 349, 351, 399.
(14) Skjold-Jərgensen, S.; Kolbe, B.; Gmehling, J.; Rasmussen, P. Ind. Eng. Chem. Process Des. Dev. 1979, 18, 714-22.
(15) Sugi, H.; Katayama, T. J. Chem. Eng. Jpn. 1978, 11, 167-72.
(16) Timmermans, J. "Physico-Chemical Constants of Pure Organic Compounds"; Elsevier: New York, 1965; Vol II, pp 241-2.

Received for review February 16, 1982. Accepted July 2, 1982.

Enthalpies of Formation, Densities, and Heat Capacities at $25^{\circ} \mathrm{C}$ in the Liquid-Phase Region of the System $\mathrm{K}_{2} \mathbf{O}-\mathrm{P}_{2} \mathrm{O}_{5}-\mathrm{H}_{2} \mathrm{O}$

Basll B. Luff* and Robert B. Reed
Division of Chemical Development, National Fertllizer Development Center, Tennessee Valley Authority, Muscle Shoals, Alabama 35660

Abstract

Measurements of the enthalpies of solution of monopotasslum orthophosphate in various aqueous solutions of potassium hydroxide and phosphoric acid were made at $25^{\circ} \mathrm{C}$, and the apparent enthalples of formation of the solutions were derived. Measurements of the densities and heat capacities of the solutions also were made.

The heat requirements in the production of fertilizer solutions may be determined by measurement of the enthalpies of formation of solutions of different $\mathrm{K}_{2} \mathrm{O}: \mathrm{P}_{2} \mathrm{O}_{5}$ ratios in the liquidphase region of the system $\mathrm{K}_{2} \mathrm{O}-\mathrm{P}_{2} \mathrm{O}_{5}-\mathrm{H}_{2} \mathrm{O}$. This information also would be helpful in determining both the enthalpies of hydrolysis of potassium polyphosphate solutions and the enthalpies of formation of solutions containing additional components such as ammonia, urea, and chloride.

Reported here are the results of measurements of the enthalpies of solution of $\mathrm{KH}_{2} \mathrm{PO}_{4}$ in various aqueous solutions of KOH and $\mathrm{H}_{3} \mathrm{PO}_{4}$. The enthalpies of solution were combined with published values of enthalpies of formation to determine the enthalpies of formation of the solutions. The densities and the heat capacities of the solutions also are reported. Enthalpies of solution of $\mathrm{H}_{3} \mathrm{PO}_{4}(1), \mathrm{KH}_{2} \mathrm{PO}_{4}(2)$, and $\mathrm{K}_{2} \mathrm{HPO}_{4}$ (3) have been reported. These data may be combined with published values of the enthalpies of formation of $\mathrm{H}_{3} \mathrm{PO}_{4} \cdot 100 \mathrm{H}_{2} \mathrm{O}(4), \mathrm{KH}_{2} \mathrm{PO}_{4}$, and $\mathrm{K}_{2} \mathrm{HPO}_{4}(5)$ to derive the enthalpies of formation of orthophosphate solutions with mole ratios of $\mathrm{K}_{2} \mathrm{O}: \mathrm{P}_{2} \mathrm{O}_{5}$ of 0,1 , and 2.

Materials and Apparatus

Monopotassium orthophosphate was prepared by recrystallizing the reagent-grade salt from distilled water and drying at $105^{\circ} \mathrm{C}$. Chemical analyses showed this salt to contain 52.1\% $\mathrm{P}_{2} \mathrm{O}_{5}$ and $34.6 \% \mathrm{~K}_{2} \mathrm{O}$ (stoichiometric; 52.15\% $\mathrm{P}_{2} \mathrm{O}_{5}$, $34.61 \% \mathrm{~K}_{2} \mathrm{O}$). The potassium hydroxide solutions were prepared from reagent-grade KOH and distilled water. Their concentrations, expressed in molality (m_{1}), were determined by acid
titrations. The phosphoric acid solutions were prepared from reagent-grade $\mathrm{H}_{3} \mathrm{PO}_{4}$ and distilled water. Their concentrations, also expressed in molality (m_{2}), were determined by chemical analyses.
The solution calorimeter, the method of measurement, and the corrections applied have been described $(6,7)$. The defined calorie was taken as 4.1840 absolute J . The average temperature for each of the solution periods is listed in the supplementary material (see paragraph at end of text regarding supplementary material). No corrections were applied to convert the enthalpies of solution to $25.00^{\circ} \mathrm{C}$.

Enthalpies of Solution of $\mathbf{K H}_{\mathbf{2}} \mathbf{P O}_{\mathbf{4}}$ in KOH Solutions

Monopotassium orthophosphate was added to each of the KOH solutions in successive increments to a final concentration near the saturation isotherm (8). The maximum temperature change during the solution period was arbitrarily set at about $1^{\circ} \mathrm{C}$, which limited the amount of solute to about 8 g at the lower concentrations of $\mathrm{KH}_{2} \mathrm{PO}_{4}$. The bulb volumes limited the amount of solute at the higher concentrations. The transfer of the final solution of one measurement from the calorimeter to a weighed fixed volume for the next measurement entailed some loss of the solution. Where larger amounts of solute were dissolved, there was still an excess of solution after the transfer and the excess could be removed before weighing the initial solution for the next measurement. Where smaller amounts of solute were dissolved, however, it was necessary to weigh the transferred solution and then add a weighed amount of the solvent (the KOH solution) to maintain the fixed volume. The concentration of the initial solution for the measurement thus could be determined. The concentration for each measurement, expressed as molality of $\mathrm{KH}_{2} \mathrm{PO}_{4}\left(m_{2}\right)$, is the average concentration of the initial and final solutions. The differential enthalpy of solution for each measurement was calculated from the equation

$$
\begin{equation*}
\mathrm{d} T / \mathrm{d} m_{2}=136.08934 Q / 1000 w \tag{1}
\end{equation*}
$$

where Q is the observed enthalpy change in calories, w is the

Table I. Coefficients of Eq 2 for KOH Solvents

m_{1}	$m n_{2}$	coeff				SD, kcal (mol of $\left.\mathrm{KH}_{2} \mathrm{PO}_{4}\right)^{-1}$
		A	B	C	D	
0.506	0.000-0.492		tabu	ation		
0.506	0.492-1.570	3.935	-0.109			0.01
0.998	0.000-0.945		tabu	ation		
0.998	0.945-2.684	4.317	-1.472	0.8957	-0.1760	0.01
1.495	0.000-0.500	-16.103				0.04
1.495	0.500-1.379		tabu	ation		
1.495	1.379-3.032	0.432	3.814	-1.6306	0.2321	0.01
1.987	0.000-0.600	-16.141	-0.170	-0.3105		0.02
1.987	0.600-1.788		tabu	ation		
1.987	1.788-3.406	3.056	0.082			0.02
3.029	0.000-1.060	-16.209	--0.247			0.05
3.029	1.060-1.700		tabu	ation		
3.029	1.700-2.589	-1.263	0.139			0.00
3.029	2.589-4.217	0.907	1.147	-0.1385		0.02
4.121	0.000-1.400	-16.276	-0.216			0.05
4.121	1.400-2.000		tabu			
4.121	2.000-3.347	-2.020	0.371			0.02
4.121	3.347-5.138	-5.471	3.379	-0.4037		0.11
4.645	0.000-1.560	-16.273	-0.256			0.03
4.645	1.560-2.180		tabu	ration		
4.645	2.180-3.685	-2.432	0.476			0.02
4.645	3.685-5.691	-7.695	4.345	-0.4235		0.15

Table II. Coefficients for Eq 4

	coeff						SD
	A	B	C	D	E	F	
$R<1$	-5.996	1.997×10^{-1}	14.038	-4.716×10^{-3}	-8.832×10^{-1}	-2.393×10^{-2}	0.06
$1<R<2$	-3.087	4.317×10^{-1}	9.980	-12.483×10^{-3}	-4.546×10^{-1}	-8.958×10^{-2}	0.14
$R>2$	15.572	1.060×10^{-1}	4.784×10^{-2}	-4.303×10^{-3}	-1.287×10^{-3}	8.238×10^{-3}	0.07

weight of $\mathrm{KH}_{2} \mathrm{PO}_{4}$ in grams dissolved during the measurement, and T is the total enthalpy change in kilocalories when $m_{2} \mathrm{~mol}$ of $\mathrm{KH}_{2} \mathrm{PO}_{4}$ is dissolved in 1000 g of the solvent. The gram formula weight of $\mathrm{KH}_{2} \mathrm{PO}_{4}$ is 136.08934 . The measured values and the differential enthalpy of solution ($\mathrm{d} T / \mathrm{d} m_{2}$) for each measurement are listed in the supplementary material. The exothermic differential enthalpies of soiution decrease rapidly in the concentration range equivalent to $\mathrm{K}_{3} \mathrm{PO}_{4}$ in water and change to endothermic at the concentration equivalent to $\mathrm{K}_{2} \mathrm{HPO}_{4}$ in water. Where it was convenient, the observed differential enthalpies of solution as a function of molality were fitted to equations of the form

$$
\begin{equation*}
\mathrm{d} T / \mathrm{d} m_{2}=A+B m_{2}+C m_{2}{ }^{2}+D m_{2}^{3} \tag{2}
\end{equation*}
$$

for each solvent by the least-squares method. The coefficients of the equations for each of the solvents, along with their standard deviations and the concentration ranges in which they are effective, are listed in Table I. Integration of these equations with respect to m_{2} plus the correct values for the integration constants and then division by m_{2} glves the integral enthalpies of solution, ΔH, in $\mathrm{kcal}\left(\mathrm{mol} \text { of } \mathrm{KH}_{2} \mathrm{PO}_{4}\right)^{-1}$ as a function of molality. Where the differential enthalpies of solution change greatly with concentration, smooth curves were fitted to the observed values. Tabular integration and division by m_{2} gave the integral enthalpies of solution at even values of m_{2} in those concentration ranges. The ranges in which tabular integration was employed also are listed in Table I. The integral of eq 2 for each solvent and range of m_{2} was solved for ΔH at the values of m_{2} corresponding to integers of percent $\mathrm{P}_{2} \mathrm{O}_{5}$. In the ranges where tabular integration was employed, the values for ΔH were determined by straight-line interpolation between adjacent even values of m_{2}. Values for percent $\mathrm{K}_{2} \mathrm{O}$ corresponding to the integers of percent $\mathrm{P}_{2} \mathrm{O}_{5}$ were calculated from straight-line equations through percent $\mathrm{K}_{2} \mathrm{O}$ in the solvent and percent $\mathrm{P}_{2} \mathrm{O}_{5}$ and percent $\mathrm{K}_{2} \mathrm{O}$ and $\mathrm{KH}_{2} \mathrm{PO}_{4}$. The equations for percent $\mathrm{K}_{2} \mathrm{O}$ as a function of percent $\mathrm{P}_{2} \mathrm{O}_{5}$, along with values of $m_{2}, \Delta \mathrm{H}$, and percent $\mathrm{K}_{2} \mathrm{O}$ corresponding to each integer of
percent $\mathrm{P}_{2} \mathrm{O}_{5}$, are listed in the supplementary material.
As stated earlier, the differential enthalpies of solution and thus the slopes of the integral enthalpies of solution change markedly at concentrations where the mole ratio of $\mathrm{KOH}: \mathrm{KH}_{2}-$ PO_{4} is 1 and 2, corresponding to $\mathrm{K}_{2} \mathrm{HPO}_{4}$ in water and $\mathrm{K}_{3} \mathrm{PO}_{4}$ in water, respectively. The mole ratio of $\mathrm{KOH}: \mathrm{KH}_{2} \mathrm{PO}_{4}, R$, for each integer of percent $\mathrm{P}_{2} \mathrm{O}_{5}$ listed in the supplementary material was calculated from the equation

$$
\begin{equation*}
R=1.50679\left(\% \mathrm{~K}_{2} \mathrm{O} / \% \mathrm{P}_{2} \mathrm{O}_{5}\right)-1 \tag{3}
\end{equation*}
$$

where 1.50679 is the gram formula weight ratio $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{K}_{2} \mathrm{O}$. These values for R also are listed in the supplementary material. Equations of the form

$$
\begin{equation*}
-\Delta H=A+B P+C R+D P^{2}+E R^{2}+F R P \tag{4}
\end{equation*}
$$

where P is the percent $P_{2} O_{5}$, were fitted to the values of P, R, and ΔH by the least-squares method over three ranges of R ($R<1,1<R<2$, and $R>2$). The coefficients of the equations, the standard deviations, and the range of R for which each equation is effective are listed in Table II. Values for ΔH calculated from these equations also are listed in the supplementary material.

Enthalpy of Solution of $\mathrm{KH}_{\mathbf{2}} \mathrm{PO}_{\mathbf{4}}$ In $\mathbf{H}_{\mathbf{3}} \mathrm{PO}_{\mathbf{4}}$ Solutions

The procedure for determining the enthalpies of solution of $\mathrm{KH}_{2} \mathrm{PO}_{4}$ in $\mathrm{H}_{3} \mathrm{PO}_{4}$ solutions was similar to that described for KOH solutions, and eq 1 was used to determine the differential enthalpy of solution for each measurement (supplementary material).

Equation 2 was filted to the observed differential enthalpies of solution as a function of solute molality for each solvent. The coefficients for eq 2 for each of the solvents, along with their standard deviations, are listed in Table III. Integration of these equations with respect to m_{2} (the integration constant is zero in each case) and division by m_{2} gives the integral en-

Table III. Coefficients of Eq 2 for $\mathrm{H}_{3} \mathrm{PO}_{4}$ Solvents

m_{1}	A	B	C	D	SD, kcal $(\mathrm{mol} \mathrm{of}$ $\mathrm{KH}_{2}-$ $\left.\mathrm{PO}_{4}\right)^{-1}$
			coeff		

thalpies of solution in kcal (mol of $\left.\mathrm{KH}_{2} \mathrm{PO}_{4}\right)^{-1}$ as a function of molality. The integral of eq 2 for each solvent was solved for ΔH at the values of m_{2} corresponding to integers of percent $\mathrm{K}_{2} \mathrm{O}$. Values for percent $\mathrm{P}_{2} \mathrm{O}_{5}$ corresponding to the integers of percent $\mathrm{K}_{2} \mathrm{O}$ were calculated from straight-line equations through percent $\mathrm{P}_{2} \mathrm{O}_{5}$ in the solvent and percent $\mathrm{P}_{2} \mathrm{O}_{5}$ and percent $\mathrm{K}_{2} \mathrm{O}$ in $\mathrm{KH}_{2} \mathrm{PO}_{4}$. The equations for percent $\mathrm{P}_{2} \mathrm{O}_{5}$ as a function of percent $\mathrm{K}_{2} \mathrm{O}$, along with values of $m_{2}, \Delta H$, and percent $\mathrm{P}_{2} \mathrm{O}_{5}$ corresponding to each integer of percent $\mathrm{K}_{2} \mathrm{O}$, are listed in Table IV. The equation

$$
\begin{array}{r}
\Delta H=5.110-0.1619 K+0.003195 P+0.002053 K^{2}- \\
0.001183 P^{2}+0.003722 P K \tag{5}
\end{array}
$$

where K is percent $\mathrm{K}_{2} \mathrm{O}$ and P is percent $\mathrm{P}_{2} \mathrm{O}_{5}$, fits the values calculated from the integrals of eq 2, with a standard deviation of $0.02 \mathrm{kcal}\left(\mathrm{mol} \text { of } \mathrm{KH}_{2} \mathrm{PO}_{4}\right)^{-1}$. Values for ΔH calculated from eq 5 also are listed in Table IV.

Enthalpy of Formation of $\mathrm{K}_{2} \mathbf{O}-\mathrm{P}_{2} \mathrm{O}_{\mathbf{5}}-\mathrm{H}_{2} \mathrm{O}$ Solutions

The solution of $\mathrm{KH}_{2} \mathrm{PO}_{4}$ in KOH solutions can be described by the equation

$$
\begin{align*}
& \mathrm{KH}_{2} \mathrm{PO}_{4}+R\left(\mathrm{KOH} \cdot x \mathrm{H}_{2} \mathrm{O}\right) \\
&= \tag{6}\\
& \mathrm{K}_{2} \mathrm{HPO}_{4} \cdot(R-1) \mathrm{KOH} \cdot(R x+1) \mathrm{H}_{2} \mathrm{O}
\end{align*}
$$

where $R>1$ and by the equation

$$
\begin{align*}
& \mathrm{KH}_{2} \mathrm{PO}_{4}+R\left(\mathrm{KOH} \cdot x \mathrm{H}_{2} \mathrm{O}\right)= \\
& \quad R\left(\mathrm{~K}_{2} \mathrm{HPO}_{4}\right) \cdot(R x+R) \mathrm{H}_{2} \mathrm{O} \cdot(R-1) \mathrm{KH}_{2} \mathrm{PO}_{4} \tag{7}
\end{align*}
$$

where $R<1$. The enthalpies of formation of the resultant solutions, $\Delta H_{1}{ }^{0}$ (soln), in kcal (mol of $\left.\mathrm{P}_{2} \mathrm{O}_{5}\right)^{-1}$, can be determined from the equation

$$
\begin{array}{r}
\Delta H_{f}^{\circ}(\text { soln })=2\left[R\left\{\Delta H_{1}^{\circ}\left(\mathrm{KOH} \cdot x \mathrm{H}_{2} \mathrm{O}\right)\right\}+\Delta H_{f}^{\circ}\left(\mathrm{KH}_{2} \mathrm{PO}_{4}\right)-\right. \\
\left.\Delta H_{f}^{\circ}\left(\mathrm{H}_{2} \mathrm{O}\right)+\Delta H_{6}\right] \tag{8}
\end{array}
$$

where $R>1$ and ΔH_{6} is the integral enthalpy of solution for reaction 6 and from the equation

$$
\begin{array}{r}
\Delta H_{f}^{\circ}(\text { soln })=2\left[R\left\{\Delta H_{1}^{\circ}\left(\mathrm{KOH} \cdot x \mathrm{H}_{2} \mathrm{O}\right)-\Delta H_{f}^{\circ}\left(\mathrm{H}_{2} \mathrm{O}\right)\right\}+\right. \\
\left.\Delta H_{f}^{\circ}\left(\mathrm{KH}_{2} \mathrm{PO}_{4}\right)+\Delta H_{7}\right] \tag{9}
\end{array}
$$

where $R<1$ and ΔH_{7} is the integral enthalpy of solution for reaction 7. The standard enthalpy of formation of $\mathrm{KH}_{2} \mathrm{PO}_{4}$ is $-376.1 \mathrm{kcal} \mathrm{mol}^{-1}$ and that of $\mathrm{H}_{2} \mathrm{O}$ is $-68.315 \mathrm{kcal} \mathrm{mol}^{-1}$ (9). The standard enthalpies of formation of the KOH solutions were calculated from an equation fltted to published values (10), with a standard deviation of $0.03 \mathrm{kcal}(\mathrm{mol} \text { of } \mathrm{KOH})^{-1}$. The standard enthalpies of formation of $\mathrm{K}_{2} \mathrm{O}-\mathrm{P}_{2} \mathrm{O}_{5}-\mathrm{H}_{2} \mathrm{O}$ solutions where the mole ratios of $\mathrm{K}_{2} \mathrm{O}: \mathrm{P}_{2} \mathrm{O}_{5}>1$ were calculated at integers of percent $\mathrm{P}_{2} \mathrm{O}_{5}$ and percent $\mathrm{K}_{2} \mathrm{O}$ by using eq 3, 4, 8, and 9 and are listed in Table V.

Table IV. Integral Enthalpy of Solution of $\mathrm{KH}_{2} \mathrm{PO}_{4}$ in $\mathrm{H}_{3} \mathrm{PO}_{4}$ Solutions

\% $\mathrm{K}_{2} \mathrm{O}$	$\% \mathrm{P}_{2} \mathrm{O}_{5}$	m_{2}	$\Delta H, \mathrm{kcal} \mathrm{mol}^{-1}$	
			integral of eq 2	eq 5
$m_{1}=0.510, \% \mathrm{P}_{2} \mathrm{O}_{5}=3.450+1.40710\left(\% \mathrm{~K}_{2} \mathrm{O}\right)$				
1.0	4.857	0.2186	5.00	4.96
2.0	6.264	0.4507	4.82	4.85
3.0	7.671	0.6974	4.67	4.68
4.0	9.078	0.9602	4.55	4.56
5.0	10.486	1.2408	4.45	4.45
6.0	11.893	1.5410	4.36	4.35
7.0	13.300	1.8629	4.29	4.26
$m_{1}=1.019, \% \mathrm{P}_{2} \mathrm{O}_{5}=6.575+1.31681\left(\% \mathrm{~K}_{2} \mathrm{O}\right)$				
1.0	7.892	0.2186	4.95	4.93
2.0	9.209	0.4507	4.77	4.79
3.0	10.525	0.6974	4.63	4.66
4.0	11.842	0.9602	4.51	4.54
5.0	13.159	1.2408	4.41	4.43
6.0	14.476	1.5410	4.33	4.33
7.0	15.793	1.8629	4.25	4.24
8.0	17.109	2.2091	4.16	4.16
$m_{1}=1.514, \% \mathrm{P}_{2} \mathrm{O}_{5}=9.355+1.23649\left(\% \mathrm{~K}_{2} \mathrm{O}\right)$				
1.0	10.591	0.2186	4.91	4.89
2.0	11.828	0.4507	4.75	4.75
3.0	13.064	0.6974	4.61	4.63
4.0	14.301	0.9602	4.49	4.51
5.0	15.537	1.2408	4.39	4.41
6.0	16.774	1.5410	4.30	4.31
7.0	18.010	1.8629	4.23	4.22
8.0	19.247	2.2091	4.15	4.14
$m_{1}=1.988, \% \mathrm{P}_{2} \mathrm{O}_{5}=11.807+1.16564\left(\% \mathrm{~K}_{2} \mathrm{O}\right)$				
1.0	12.973	0.2186	4.86	4.84
2.0	14.138	0.4507	4.71	4.71
3.0	15.304	0.6974	4.58	4.59
4.0	16.470	0.9602	4.46	4.47
5.0	17.635	1.2408	4.36	4.37
6.0	18.801	1.5410	4.28	4.27
7.0	19.966	1.8629	4.21	4.19
8.0	21.132	2.2091	4.13	4.11
$m_{1}=3.076, \% \mathrm{P}_{2} \mathrm{O}_{5}=16.773+1.02216\left(\% \mathrm{~K}_{2} \mathrm{O}\right)$				
1.0	17.795	0.2186	4.70	4.70
2.0	18.817	0.4507	4.58	4.58
3.0	19.839	0.6974	4.46	4.46
4.0	20.862	0.9602	4.36	4.36
5.0	21.884	1.2408	4.27	4.26
6.0	22.906	1.5410	4.19	4.18
7.0	23.928	1.8629	4.11	4.10
8.0	24.950	2.2091	4.05	4.03
9.0	25.972	2.5822	3.98	3.97
$m_{1}=4.106, \% \mathrm{P}_{2} \mathrm{O}_{5}=20.780+0.90639\left(\% \mathrm{~K}_{2} \mathrm{O}\right)$				
1.0	21.686	0.2186	4.54	4.54
2.0	22.593	0.4507	4.43	4.43
3.0	23.499	0.6974	4.33	4.33
4.0	24.406	0.9602	4.24	4.23
5.0	25.312	1.2408	4.15	4.15
6.0	26.218	1.5410	4.08	4.07
7.0	27.125	1.8629	4.01	4.00
8.0	28.031	2.2091	3.94	3.94
9.0	28.938	2.5822	3.88	3.89
10.0	29.844	2.9857	3.82	3.85
$m_{1}=5.081, \% \mathrm{P}_{2} \mathrm{O}_{5}=24.075+0.81119\left(\% \mathrm{~K}_{2} \mathrm{O}\right)$				
1.0	24.886	0.2186	4.37	4.39
2.0	25.697	0.4507	4.28	4.29
3.0	26.509	0.6974	4.19	4.19
4.0	27.320	0.9602	4.11	4.11
5.0	28.131	1.2408	4.04	4.03
6.0	28.942	1.5410	3.97	3.96
7.0	29.753	1.8629	3.91	3.90
8.0	30.565	2.2091	3.85	3.85
9.0	31.376	2.5822	3.80	3.81
10.0	32.187	2.9857	3.75	3.77

Table V. Enthalpies of Formation of $\mathrm{K}_{2} \mathrm{O}-\mathrm{P}_{2} \mathrm{O}_{5}-\mathrm{H}_{2} \mathrm{O}$ Solution, kcal (mol of $\left.\mathrm{P}_{2} \mathrm{O}_{5}\right)^{-1}$

$\%$	\% $\mathrm{K}_{2} \mathrm{O}$												
$\mathrm{P}_{2} \mathrm{O}_{5}$	0	1	2	3	4	5	6	7	8	9	10	11	12
1	619.67	801.59	1109.75	1455.81	1801.69	2147.42	2493.04	2838.57	3184.01	3529.36	3874.60	4219.72	4564.70
2	619.55	712.06	801.92	923.77	1109.76	1282.69	1455.56	1628.38	1801.75	1973.88	2146.57	2319.20	2491.77
3	619.46	681.22	741.87	802.23	862.20	986.07	1109.79	1225.03	1340.24	1455.42	1570.58	1685.70	1800.78
4	619.38	665.75	712.26	757.38	802.52	847.10	924.59	1017.24	1109.84	1196.24	1282.63	1368.99	1455.32
5	619.31	656.44	693.69	731.02	766.75	802.80	838.47	887.83	961.99	1035.97	1109.88	1178.99	1248.07
6	619.24	650.21	681.28	712.44	742.81	773.07	803.05	832.78	863.43	925.24	986.92	1048.46	1109.92
7	619.18	645.75	672.41	699.14	725.92	751.76	777.62	803.29	828.77	854.06	899.05	951.92	1004.70
8	619.12	642.39	665.74	689.14	712.60	736.10	758.49	781.08	803.51	825.79	847.94	879.46	925.71
9	619.06	639.77	660.54	681.36	702.23	723.14	743.59	763.75	783.79	803.71	823.51	843.20	864.24
10	619.00	637.66	656.36	675.12	693.92	712.76	731.62	749.87	767.98	785.98	803.89	821.70	839.43
11	618.95	635.92	652.94	670.01	687.12	704.25	721.42	738.59	755.01	771.45	787.79	804.05	820.24
12	618.89	634.47	650.08	665.74	681.44	697.16	712.90	728.66			774.34	789.30	804.20
13	618.84	633.23	647.66	662.12	676.62	691.14	705.69	720.25				776.79	790.59
14	618.78	632.16	645.57	659.02	672.49	685.98	699.50	713.03					778.89
15	618.72	631.23	643.76	656.32	668.90	681.51	694.13	706.76					
16	618.66	630.40	642.16	653.95	665.76	677.58	689.42	701.28					
17	618.60	629.67	640.75	651.86	662.98	674.12	685.27	696.43	707.60				
18	618.54	629.00	639.48	649.99	660.50	671.03	681.57	692.12	702.68				
19	618.47	628.40	638.34	648.31	658.28	668.26	678.26	688.26	698.27				
20	618.40	627.85	637.31	646.79	656.27	665.77	675.27	684.78	694.29				
21	618.33	627.34	636.37	645.40	654.45	663.50	672.56	681.63	690.69				
22	618.26	626.88	635.50	644.14	652.79	661.44	670.10	678.76	687.42				
23	618.19	626.44	634.70	642.98	651.26	659.55	667.84	676.13	684.42				
24	618.11	626.03	633.96	641.91	649.86	657.81	665.76	673.72	681.67	689.62			
25	618.03	625.65	633.28	640.91	648.55	656.20	663.85	671.49	679.14	686.78			
26	617.95		632.63	639.99	647.35	654.71	662.07	669.43	676.79	684.14			
27	617.86				646.22	653.32	660.42	667.52	674.61	681.70			
28	617.77					652.02	658.88	665.73	672.58	679.43			
29	617.68						657.44	664.06	670.68	677.30			
30	617.59							662.50	668.91	675.31			
31	617.49									673.44	679.64		
32	617.40										677.70		
\%													
$\mathrm{P}_{2} \mathrm{O}_{5}$	13	14	15	16	17	18	19	20	21	22	23	24	25
1	4909.49	5254.05	5598.33	5942.29	6285.87	6629.00							
2	2664.25	2836.63	3008.88	3180.98	3352.90	3524.61							
3	:915.81	2030.78	2145.67	2260.46	2375.14	2489.68							
4	1541.62	1627.88	1714.08	1800.22	1886.27	1972.22	2058.06						
5	1317.13	1386.16	1455.15	1524.09	1592.96	1661.76	1730.47						
6	1167.49	1225.03	1282.54	1340.01	1397.43	1454.80	1512.09						
7	1057.37	1109.94	1159.25	1208.53	1257.77	1306.96	1356.10	1405.16					
8	971.89	1017.99	1064.01	1109.92	1153.02	1196.09	1239.10	1282.06					
9	905.35	946.39	987.36	1028.26	1069.09	1109.84	1148.09	1186.30					
10	857.06	889.06	925.98	962.85	999.66	1036.39	1073.05	1109.68	1144.03				
11	836.35	852.39	875.73	909.28	942.78	976.22	1009.60	1042.91	1076.14				
12	819.03	833.80	848.50	864.61	895.35	926.04	956.67	987.24	1017.75				
13	804.33	818.01	831.64	845.21	858.72	883.52	911.83	940.08	968.27	996.40			
14	791.69	804.44	817.13	829.78	842.38	854.93	873.35	899.61	925.82	951.96			
15		792.64	804.52	816.37	828.17	839.92	851.63	864.49	888.97	913.40			
16			793.46	804.60	815.69	826.75	837.76	848.73	859.64	879.60	902.46		
17				794.18	804.65	815.08	825.48	835.84	846.15	856.40	871.26		
18					794.80	804.68	814.53	824.34	834.11	843.83	853.50		
19							804.69	814.01	823.30	832.54	841.74	850.88	
20								804.68	813.53	822.34	831.10	839.82	
21										813.07	821.44	829.77	
22											812.62	820.60	828.53
23													819.79

The solution of $\mathrm{KH}_{2} \mathrm{PO}_{4}$ in $\mathrm{H}_{3} \mathrm{PO}_{4}$ solutions can be described by the equation

$$
\begin{align*}
& \mathrm{KH}_{2} \mathrm{PO}_{4}+\left(y / m_{2}\right)\left(\mathrm{H}_{3} \mathrm{PO}_{4} \cdot x \mathrm{H}_{2} \mathrm{O}\right)= \\
& \mathrm{KH}_{2} \mathrm{PO}_{4} \cdot\left(y / m_{2}\right)\left(\mathrm{H}_{3} \mathrm{PO}_{4} \cdot x \mathrm{H}_{2} \mathrm{O}\right) \tag{10}
\end{align*}
$$

where y is the moles of phosphoric acid solution constituting 1000 g of the solvent. The enthalpies of formation of the resultant solutions in $\mathrm{kcal}\left(\mathrm{mol} \text { of } \mathrm{P}_{2} \mathrm{O}_{5}\right)^{-1}$ can be determined from the equation

$$
\begin{align*}
& \Delta H_{f}^{\circ}(\text { soin })=\left[2\left(m_{2}+y\right)\right] \times \\
& \quad\left[m_{2}\left\{\Delta H_{f}^{\circ}\left(\mathrm{KH}_{2} \mathrm{PO}_{4}\right)+\Delta H_{10}\right\}+y \Delta H_{f}^{\circ}\left(\mathrm{H}_{3} \mathrm{PO}_{4} \cdot x \mathrm{H}_{2} \mathrm{O}\right)\right] \tag{11}
\end{align*}
$$

where ΔH_{10} is the integral enthalpy of solution for reaction 10.

The standard enthalpies of formation of the phosphoric acid solutions were calculated from the standard enthalpy of formation of $\mathrm{H}_{3} \mathrm{PO}_{4} \cdot 100 \mathrm{H}_{2} \mathrm{O}\left(-309.7 \mathrm{kcal} \mathrm{mol}^{-1}\right)$ and the enthalpies of solution of orthophosphoric acid. The standard enthalpies of formation of the $\mathrm{K}_{2} \mathrm{O}-\mathrm{P}_{2} \mathrm{O}_{5}-\mathrm{H}_{2} \mathrm{O}$ solutions where the mole ratio $\mathrm{K}_{2} \mathrm{O}: \mathrm{P}_{2} \mathrm{O}_{5}<1$ were calculated at integers of percent $\mathrm{P}_{2} \mathrm{O}_{5}$ and percent $\mathrm{K}_{2} \mathrm{O}$ by using eq 5 and 11 and are listed in Table V .

Densities and Heat Capacities of $\mathrm{K}_{2} \mathbf{O}-\mathrm{P}_{2} \mathrm{O}_{5}-\mathrm{H}_{2} \mathrm{O}$ Solutions

The initial bulk charge of the liquid for each enthalpy of solution measurement was weighed at $25^{\circ} \mathrm{C}$ in a modified volumetric flask that had been calibrated with water. From these

Table VI. Density ($\mathrm{g} \mathrm{mL}^{-1}$) of $\mathrm{K}_{2} \mathrm{O}-\mathrm{P}_{2} \mathrm{O}_{5}-\mathrm{H}_{2} \mathrm{O}$ Solutions at $25^{\circ} \mathrm{C}$

$\% \mathrm{~K}_{2} \mathrm{O}$													
$\% \mathrm{P}_{2} \mathrm{O}_{5}$	0	1	2	3	4	5	6	7	8	9	10	11	12
0	1.001	1.010	1.020	1.030	1.041	1.051	1.062	1.073	1.084	1.096	1.107	1.119	1.131
1	1.008	1.017	1.027	1.037	1.048	1.058	1.069	1.080	1.091	1.103	1.115	1.127	1.139
2	1.015	1.024	1.034	1.044	1.055	1.065	1.076	1.087	1.099	1.110	1.122	1.134	1.147
3	1.022	1.031	1.041	1.052	1.062	1.073	1.084	1.095	1.106	1.118	1.130	1.142	1.154
4	1.029	1.039	1.049	1.059	1.069	1.080	1.091	1.102	1.114	1.126	1.138	1.150	1.162
5	1.036	1.046	1.056	1.066	1.077	1.088	1.099	1.110	1.122	1.134	1.146	1.158	1.170
6	1.043	1.053	1.064	1.074	1.085	1.095	1.107	1.118	1.130	1.141	1.154	1.166	1.178
7	1.051	1.061	1.071	1.082	1.092	1.103	1.114	1.126	1.138	1.150	1.162	1.174	1.187
8	1.059	1.069	1.079	1.089	1.100	1.111	1.122	1.134	1.146	1.158	1.170	1.182	1.195
9	1.066	1.076	1.087	1.097	1.108	1.119	1.131	1.142	1.154	1.166	1.178	1.191	1.204
10	1.074	1.084	1.095	1.105	1.116	1.127	1.139	1.150	1.162	1.174	1.187	1.199	1.212
11	1.082	1.092	1.103	1.113	1.124	1.136	1.147	1.159	1.171	1.183	1.195	1.208	1.221
12	1.090	1.100	1.111	1.122	1.133	1.144	1.156	1.167			1.204	1.217	1.230
13	1.098	1.109	1.119	1.130	1.141	1.152	1.164	1.176				1.225	1.239
14	1.107	1.117	1.128	1.139	1.150	1.161	1.173	1.185					1.248
15	1.115	1.125	1.136	1.147	1.158	1.170	1.181	1.193	1.206				
16	1.124	1.134	1.145	1.156	1.167	1.179	1.190	1.202	1.215				
17	1.132	1.143	1.154	1.165	1.176	1.188	1.199	1.211	1.224				
18	1.141	1.152	1.162	1.174	1.185	1.197	1.208	1.221	1.233				
19	1.150	1.160	1.171	1.183	1.194	1.206	1.218	1.230	1.242				
20	1.159	1.170	1.181	1.192	1.203	1.215	1.227	1.239	1.252				
21	1.168	1.179	1.190	1.201	1.213	1.224	1.237	1.249	1.261	1.274			
22	1.177	1.188	1.199	1.210	1.222	1.234	1.246	1.258	1.271	1.284			
23	1.186	1.197	1.208	1.220	1.232	1.244	1.256	1.268	1.281	1.294			
24	1.196	1.207	1.218	1.230	1.241	1.253	1.266	1.278	1.291	1.304			
25			1.228	1.239	1.251	1.263	1.275	1.288	1.301	1.314			
26				1.249	1.261	1.273	1.285	1.298	1.311	1.324			
27					1.271	1.283	1.296	1.308	1.321	1.334	1.348		
28						1.293	1.306	1.319	1.332	1.345	1.358		
29								1.329	1.342	1.355	1.369		
30									1.353	1.366	1.380		
31										1.377	1.390		
32											1.401		
						\% K ${ }_{2} \mathrm{O}$							
$\% \mathrm{P}_{2} \mathrm{O}_{5}$	13	14	15	16	17	18	19	20	21	22	23	24	25
0	1.144	1.157	1.170	1.183	1.196	1.210							
1	1.152	1.164	1.177	1.191	1.204	1.218							
2	1.159	1.172	1.185	1.198	1.212	1.226							
3	1.167	1.180	1.193	1.206	1.220	1.234							
4	1.175	1.188	1.201	1.215	1.228	1.242	1.256						
5	1.183	1.196	1.209	1.223	1.237	1.251	1.265						
6	1.191	1.204	1.218	1.231	1.245	1.259	1.273						
7	1.200	1.213	1.226	1.240	1.254	1.268	1.282	1.297					
8	1.208	1.221	1.235	1.248	1.262	1.276	1.291	1.305					
9	1.217	1.230	1.243	1.257	1.271	1.285	1.300	1.314					
10	1.225	1.238	1.252	1.266	1.280	1.294	1.309	1.323	1.338				
11	1.234	1.247	1.261	1.275	1.289	1.303	1.318	1.333	1.348				
12	1.243	1.256	1.270	1.284	1.298	1.312	1.327	1.342	1.357				
13	1.252	1.265	1.279	1.293	1.307	1.322	1.336	1.351	1.366	1.382			
14	1.261	1.274	1.288	1.302	1.317	1.331	1.346	1.361	1.376	1.392			
15	1.270	1.284	1.298	1.312	1.326	1.341	1.355	1.370	1.386	1.401			
16			1.307	1.321	1.336	1.350	1.365	1.380	1.396	1.411	1.427		
17				1.331	1.345	1.360	1.375	1.390	1.405	1.421	1.437		
18					1.355	1.370	1.385	1.400	1.416	1.431	1.447		
19							1.395	1.410	1.426	1.441	1.457	1.474	
20								1.420	1.436	1.452	1.468	1.484	
21									1.446	1.462	1.478	1.495	
22											1.489	1.505	1.522
23												1.505	1.533

weights the densities in $\mathrm{g} \mathrm{mL}^{-1}, d$, of the solutions were determined. The equation
$d=1.0008+0.006761 P+0.009439 K+$ $0.0000567 P^{2}+0.0001207 K^{2}+0.0000613 P K$
(12)
fits the observed data, with a standard deviation of 0.004 g mL^{-1}. The concentrations of the solutions, the observed densities, and those calculated from eq 12 are listed in the supplementary material. Equation 12 was used to calculate the densities at integers of percent $\mathrm{P}_{2} \mathrm{O}_{5}$ and percent $\mathrm{K}_{2} \mathrm{O}$ (Table VI).

The total weight of solution in the calorimeter, the temperature rise, and the electrical energy input during the second electrical callibration for each measurement made possible the determination of the heat capacily, s, in cal $\mathrm{g}^{-1}{ }^{\circ} \mathrm{C}^{-1}$ for each solution at the average temperature of the calibration. The water equivalent of the calorimeter had been determined previously. The equation
$s=0.9847-0.008699 P-0.012670 K-0.0000287 P^{2}+$
$0.0000153 K^{2}+0.0002159 P K(13)$

Table VII. Heat Capacity ($\operatorname{cal~g}{ }^{-1}{ }^{\circ} \mathrm{C}^{-1}$) of $\mathrm{K}_{2} \mathrm{O}-\mathrm{P}_{2} \mathrm{O}_{5}-\mathrm{H}_{2} \mathrm{O}$ Solutions at $25^{\circ} \mathrm{C}$

\% $\mathrm{K}_{2} \mathrm{O}$													
$\% \mathrm{P}_{2} \mathrm{O}_{5}$	0	1	2	3	4	5	6	7	8	9	10	11	12
0	0.985	0.972	0.959	0.947	0.934	0.922	0.909	0.897	0.884	0.872	0.859	0.847	0.835
1	0.976	0.964	0.951	0.939	0.926	0.914	0.902	0.890	0.877	0.865	0.853	0.841	0.829
2	0.967	0.955	0.943	0.931	0.918	0.906	0.894	0.882	0.870	0.858	0.846	0.834	0.822
3	0.958	0.946	0.934	0.922	0.910	0.899	0.887	0.875	0.863	0.851	0.840	0.828	0.816
4	0.949	0.938	0.926	0.914	0.902	0.891	0.879	0.868	0.856	0.844	0.833	0.821	0.810
5	0.940	0.929	0.917	0.906	0.894	0.883	0.871	0.860	0.849	0.837	0.826	0.815	0.804
6	0.931	0.920	0.909	0.897	0.886	0.875	0.864	0.853	0.841	0.830	0.819	0.808	0.797
7	0.922	0.911	0.900	0.889	0.878	0.867	0.856	0.845	0.834	0.823	0.812	0.801	0.791
8	0.913	0.902	0.891	0.881	0.870	0.859	0.848	0.837	0.827	0.816	0.805	0.795	0.784
9	0.904	0.893	0.883	0.872	0.861	0.851	0.840	0.830	0.819	0.809	0.798	0.788	0.778
10	0.895	0.884	0.874	0.863	0.853	0.843	0.832	0.822	0.812	0.801	0.791	0.781	0.771
11	0.886	0.875	0.865	0.855	0.845	0.834	0.824	0.814	0.804	0.794	0.784	0.774	0.764
12	0.876	0.866	0.856	0.846	0.836	0.826	0.816	0.806			0.777	0.767	0.757
13	0.867	0.857	0.847	0.837	0.828	0.818	0.808	0.798				0.760	0.751
14	0.857	0.848	0.838	0.828	0.819	0.809	0.800	0.790					0.744
15	0.848	0.838	0.829	0.820	0.810	0.801	0.792	0.782	0.773				
16	0.838	0.829	0.820	0.811	0.802	0.792	0.783	0.774	0.765				
17	0.828	0.820	0.811	0.802	0.793	0.784	0.775	0.766	0.757				
18	0.819	0.810	0.801	0.793	0.784	0.775	0.767	0.758	0.749				
19	0.809	0.800	0.792	0.783	0.775	0.767	0.758	0.750	0.741				
20	0.799	0.791	0.783	0.774	0.766	0.758	0.750	0.741	0.733				
21	0.789	0.781	0.773	0.765	0.757	0.749	0.741	0.733	0.725	0.717			
22	0.779	0.771	0.764	0.756	0.748	0.740	0.732	0.725	0.717	0.709			
23	0.769	0.762	0.754	0.746	0.739	0.731	0.724	0.716	0.709	0.701			
24	0.759	0.752	0.744	0.737	0.730	0.722	0.715	0.708	0.700	0.693			
25			0.735	0.728	0.720	0.713	0.706	0.699	0.692	0.685			
26				0.718	0.711	0.704	0.697	0.690	0.684	0.677			
27					0.702	0.695	0.688	0.682	0.675	0.669	0.662		
28						0.686	0.679	0.673	0.667	0.660	0.654		
29								0.664	0.658	0.652	0.646		
30									0.649	0.643	0.637		
31										0.635	0.629		
32											0.621		
$\% \mathrm{P}_{2} \mathrm{O}_{5}$	13	14	15	16	17	18	19	20	21	22	23	24	25
0	0.823	0.810	0.798	0.786	0.774	0.762							
1	0.817	0.805	0.793	0.781	0.769	0.757							
2	0.811	0.799	0.787	0.775	0.764	0.752							
3	0.805	0.793	0.781	0.770	0.758	0 D. 77							
4	0.799	0.787	0.776	0.764	0.753	- >42	0.731						
5	0.792	0.781	0.770	0.759	0.748	$0 / 37$	0.726						
6	0.786	0.775	0.764	0.753	0.742	0.732	0.721						
7	0.780	0.769	0.758	0.748	0.737	0.726	0.716	0.705					
8	0.774	0.763	0.753	0.742	0.732	0.721	0.711	0.700					
9	0.767	0.757	0.747	0.736	0.726	0.716	0.706	0.696					
10	0.761	0.751	0.741	0.731	0.721	0.711	0.701	0.691	0.681				
11	0.754	0.744	0.735	0.725	0.715	0.705	0.695	0.686	0.676				
12	0.748	0.738	0.728	0.719	0.709	0.700	0.690	0.681	0.671				
13	0.741	0.732	0.722	0.713	0.703	0.694	0.685	0.676	0.666	0.657			
14	0.734	0.725	0.716	0.707	0.698	0.689	0.679	0.670	0.661	0.652			
15	0.728	0.719	0.710	0.701	0.692	0.683	0.674	0.665	0.656	0.648			
16			0.703	0.695	0.686	0.677	0.669	0.660	0.651	0.643	0.634		
17				0.688	0.680	0.671	0.663	0.655	0.646	0.638	0.630		
18					0.674	0.666	0.657	0.649	0.641	0.633	0.625		
19							0.652	0.644	0.636	0.628	0.620	0.612	
20								0.638	0.631	0.623	0.615	0.608	
21									0.625	0.618	0.610	0.603	
22											0.605	0.598	0.591
23													0.586

fits the observed data, with a standard deviation of 0.003 cal $\mathrm{g}^{-1}{ }^{\circ} \mathrm{C}^{-1}$. The concentrations of the solutions, the average temperature of each measurement, the observed heat capacities, and those calculated from eq 13 are listed in the supplementary material. Equation 13 was used to calculate the heat capacities at integers of percent $\mathrm{P}_{2} \mathrm{O}_{5}$ and percent $\mathrm{K}_{2} \mathrm{O}$ (Table VII). The average temperature of all the observed heat capacities is $25.7^{\circ} \mathrm{C}$, with a standard deviation of $0.4^{\circ} \mathrm{C}$; but since the rate of change of heat capacity with temperature is small, no corrections were applied to convert the heat capac-
ities to $25^{\circ} \mathrm{C}$.
Registry No. Potassium dihydrogen orthophosphate, 7778-77-0; potassium hydroxide, 1310-58-3; orthophosphoric acid, 7664-38-2.

Literature Cited

(1) Egan, E. P., Jr.; Luff, B. B. J. Phys. Chem. 1981, 65, 523-6.
(2) Egan, E. P., Jr.; Luft, B. B. J. Chem. Eng. Data 1983, 8, 181-2.
(3) Luff, B. B.; Reed, R. B. J. Chem. Eng. Data 1976, 23, 56-8.
(4) Schumm, R. H.; Prosen, E. J.; Wagman, D. D. J. Res. Natl. Bur. Stand.., Sect. A 1974, 78, 375-86.
(5) Luff, B. B.; Reed, R. B. J. Chem. Eng. Data 1978, 23, 60-2.
(6) Lutt', B. B.; Reed, R. B. J. Chem. Eng. Data 1978, 23, 192-3.

Salting Effects of p-Aminophenol in Some Protic Solvents at $20^{\circ} \mathrm{C}$

Bharatl Das*
Department of Chemistry, University of Roorkee, Roorkee, U.P., 247667, India

Ratna Ghosh
Department of Chemistry, Indian Institute of Technology, Kharagpur, W. Bengal, 721302, India

Saturation solubilities of p-aminophenol (PAP) in the presence of four salts, viz., $\mathrm{NaCl}, \mathrm{Na}_{2} \mathrm{SO}_{4}, \mathrm{NaClO}_{4}$, and KSCN, in three solvents, viz., water, ethyl acetate, and dioxane, have been determined at $20^{\circ} \mathrm{C}$. The effect of salts on the solubility of p-aminophenol and the salting coefficients, K_{g}, have been evaluated. The salting out decreases in the order $\mathrm{Na}_{2} \mathrm{SO}_{4}>\mathrm{NaCl}>\mathrm{NaClO}_{4}>$ KSCN. Dloxane shows the highest salting order followed by ethyl acetate and water.

Introduction

The process of salting out is studied by shaking a solute between two immiscible solvent phases, one of them being the organic phase and the other the aqueous phase containing the salt called the salting-out agent, and then analyzing the solute concentration in one phase or both phases. However, if the information desired relates to miscible solvents, the ratio of solubilities in two separate solvents is measured and reported as the distribution coefficient. Furthermore, when protic solvents are used for salting studies, as in the present case, the ratio of the saturation solubility of the solute in pure solvent and in the presence of salt can be used to calculate the salting-out coefficient.
The solubility method has been used extensively to study the salting effect for various classes of organic compounds. Amino acids (1, 2), phenols and cresols (3), toluene (4), benzoyltrifluoroacetone (5), hydrocarbons and substituted benzenes (6), monoalkylbenzene (7), etc., in the presence of salting agents have been studied by the solubility method. The solubility technique, however, requires relatively high concentrations of organic solutes to saturate many solvents.
We have determined the saturation solubilities of p-aminophenol (hereafter designated PAP) in the presence of four salts (both structure makers and structure breakers), viz., sodium chloride (NaCl), sodium sulfate $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, sodium perchlorate $\left(\mathrm{NaClO}_{4}\right)$, and potassium thiocyanate (KSCN), in three protic solvents, viz., water, dioxane, and ethyl acetate, at $20^{\circ} \mathrm{C}$. The solubility technique was utilized here, due to the reason that PAP is almost insoluble in aprotic solvents (like benzene, toluene, etc.) and the extraction technique was not suitable for the present studies.

Experimental Section

E. Merck AnalaR-grade PAP was vacuum dried over anhydrous NaOH to remove any existing traces of water. All salts, viz., $\mathrm{NaCl}, \mathrm{Na}_{2} \mathrm{SO}_{4}, \mathrm{NaClO}_{4}$, and KSCN , were of AnalaR grade and were used without any further purification. Dioxane and ethyl acetate of BDH AnalaR grade and water were double distilled at temperatures much below their boiling points at a recovery rate of $1.0 \mathrm{~mL} \mathrm{~min}^{-1}$.

Saturation solubilities of PAP in the absence and the presence of weighed amounts of salts in different solvents were calculated. Different amounts of salt required for different molarities (from 0.2 to 2 M) for a fixed volume of solvent were shaken along with excess PAP in stoppered Corning-glass boiling tubes for about 6 h to obtain saturation with respect to PAP. After being shaken, the solutions were set aside for several hours, or untll the solutions became clear. A thermostatic shaker with an arrangement for holding as many as 18 boiling tubes was used for shaking. This maintained the temperature to $\pm 0.2{ }^{\circ} \mathrm{C}$.

A Carl Zeiss Specord UV-vis spectrophotometer with a thermostated cell compartment and $5.0-$ and $1.0-\mathrm{cm}$ and $1.0-$ mm matched quartz cells were used for absorbance measurements.

The clear solution of PAP obtained after shaking was separated (diluted where required) and its absorbance noted in the UV region at 312 nm . The concentration was found from the known values, as the Beer-Lambert law was found to be valid. The precision in all cases was better than 1.0%. The reproducible values only have been recorded in Table I.

Results and Discussion

The salting coefficient, K_{3}, is most commonly determined from the solubility according to the empirical Setschenow equation (8)

$$
\begin{equation*}
\log f=\log \left(S^{0} / S\right)=K_{s} C_{s} \tag{1}
\end{equation*}
$$

where S^{0} and S denote the solubility of PAP in pure solvent and in the presence of salt, respectively, C_{8} is the salt concentration, and f is the activity coefficient of PAP in the solvent when salt is added. The plot of $\log \left(S^{\circ} / S\right)$ against C_{s} gave straight

